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Abstract 

This research has integrated the causality condition into frequency-domain analysis and control of struc- 
tural vibration, acoustic scattering, and acoustic radiation. As a result of these efforts, a variety of active 
and passive control approaches are now physically realizable. In the time domain, causality simply requires 
that a system's response cannot precede its cause. In active control problems, the causaUty condition further 
requires that one cannot use future disturbance information to determine control actuation. These conditions 
are more subtle in the frequency domain, where one typically interprets experimental data and constructs 
active and passive control approaches. In the frequency domain, the causality condition assumes the form 
of Hilbert transform relations between elements of the complex Fourier transform of a causal response. This 
research produced analytical formulations of the causality condition to enhance experimental data and to 
devise physically reahzable control approaches in the frequency domain. Two contemporary active control 
approaches were used to illustrate the inclusion of causality. The research developed such formulations, and 
their algorithmic implementations, with a close association to experimental data and control approaches that 
are of contemporary importance to the Office of Naval Research. 
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Chapter 1 

Literature Review 

1.1 Causality at Large 
The causality condition arises in most time-dependent problems in engineering and physics. The bibUography 
includes a long list of publications on the causality condition from an astonishingly diverse collection of fields. 
While detailed review of these publication is beyond the scope of this report, all of this work has been obtained 
and studied in the course of this project. Many references are cited in the appropriate technical context later 
in this report. 

1.2 Causality and Structural Acoustics 

This section offers a detailed review of work involving the causality condition in structural acoustics because 
this is the focus of the present work. One of the earhest applications was described by Mangulis in a 1963 
"Letter to the Editor" [1]. That letter presented Hilbert transform relations between radiation resistance 
and reactance and illustrated them for the case of a rigid circular piston in an infinite rigid baffle. Mangulis 
also derived low-frequency behaviors of radiation resistance and reactance. These relations were employed 
by Radlinski and Meyers [2] in 1974 to explain the frequency dependence of radiation reactance in terms of 
resonant peaks in the radiation resistance for the case of a pulsating cylinder surrounded by a circular case 
of parallel cylindrical rods. 

Almost two decades passed before the present author began exploring application of these relationships 
to the design of radiated and scattered sound fields. In a 1993 presentation to the ONR-Sponsored European 
Workshop on Structural Acoustics for Young Investigators, McDaniel [3] presented an approach for deriving 
structural dynamics that satisfy the causality condition and produce a desired interaction with the surround- 
ing acoustic medium. This work was followed by a 1997 conference paper [4] in which McDaniel investigated 
two applications of the causality condition to a one-dimensional reflection problem. Both applications em- 
ployed Hilbert transform relations between the magnitude and phase of a minimum phase system. The first 
application involved determination of the refiection phase from the magnitude. This is only possible for a 
minimum phase reflection coefficient, which was found to be equivalent to a reflecting resistance greater than 
the fluid impedance. The second application involved the determination of a reflecting impedance that pro- 
duces a specified reflection magnitude. The reflection phase was found by taking the Hilbert transform of the 
magnitude. The reflecting impedance was found from the usual algebraic relationship between impedance 
and reflection coefficient. This second application was extended to one-dimensional transmission problems 
in a 1997 conference presentation by McDaniel [5]. 

The possibility of deriving refiecting impedances from non-minimum phase reflection coefficients was 
investigated by McDaniel in 1999 [6]. This work defined a class of reflecting impedances that produce the 
same reflection magnitudes but different phases. Only one of the impedances produces a minimum phase 
reflection coefficient.   One value of defining such a class is to allow designers to choose the impedances 



that are most easily achieved. In following chapters, we review results in two publications that resulted 
from the present project. The first involved extension of the previous ideas to three-dimensional scattering 
problems by McDaniel in 2001 [7]. Also during that year, McDaniel and Clarke [8] presented several physical 
interpretations of minimum phase reflection coeflBcients and derived a collection of results that allow a priori 
identification of some minimum phase reflection coefficients based on approximate knowledge of the reflecting 
impedance. 



Chapter 2 

Mathematical Background 

2.1 Introduction 

For convenience of referral, this chapter presents mathematical results used in the present work. The nota- 
tions and conventions of Papoulis [9] are followed as closely as possible and, unless noted otherwise, results 
in this chapter are from this reference. 

2.2 Fourier Transform 

A temporal function /(<) and its Fourier transform F{uj) are related by 

1       /.oo 

fit)    =   ^~'{n^)} = ^J     i^He'"*&;, (2.1) 
/oo 

f{t)e-"''dt. (2.2) 
-oo 

2.3 Transfer Functions 

Consider a linear system with an input f{t) and an output g{t). Then the transfer function is defined as the 
ratio of the Fourier transforms of output to input, 

HM = fM. (.3) 

If the input is taken as a delta function centered at ^ = 0, /(<) = 5{t), then its Fourier transform is F{u>) = 1 
and (2.3) indicates that the transfer function is the Fourier transform of the response, or H{oj) = G{u)). For 
this reason, the inverse Fourier transform of the transfer function, h{t), is known as the impulse response. 

For physical reasons, many impulse responses are required to be real-valued.   This requires that the 
transfer function be conjugate symmetric in frequency, 

H{u)) = H*{-uj). (2.4) 

Work presented in this report will frequently involve transfer functions at discrete positive-valued frequencies 
and the corresponding negative values will be found by invoking the real-valued condition and using the above 
equation in the frequency domain. 



2.4 Definition of the Causality Condition 

The causality condition requires that the cause must precede the effect. In linear system theory, this means 
that the input must precede the output, or simply "no output before input." Therefore, a causal transfer 
function is one whose impulse response is zero for negative time, 

h{t) = jf-i {J?(w)} = 0 for < < 0, (2.5) 

because the input is applied at i = 0. 

2.5 Hilbert Transform 

To simplify the presentation of results, the Hilbert transform is defined as 

n{F{uj)} = ^ r ^^dy (2.6) 

Divergence of the integral at w = y is addressed by taking the Cauchy principal value of the integral [10]. 

2.6 Relationships Between Real and Imaginary Parts 

Writing the transfer function as H{oj) = Hre{(^) + iHim{uj), causality requires that 

Himi^)     =     -n{Hre{uj)}, (2.7) 

Hre{0j)     =     Hre{00)+n{Himic0)}. (2.8) 

A proof of the above relations, which are central to the present work, is outlined here. The impulse response, 
h{t), is written as a sum of even and odd parts, h{t) = he{t) + ho{t). This is always possible by defining 

he{t)    =    [h{t) + h{-t)]l2, (2.9) 

ho(t)    =    [h{t) - h{-t)]l2. (2.10) 

If h{t) is zero for negative time, then even and odd parts are related by the sign function, 

ho{t)    =    he{t)sgn{t), (2.11) 

he{t)    =    ho{t)sgn{t), (2.12) 

so that the sum of even and odd parts is zero for negative time and twice either part for positive time. 
Noting the Fourier transform pairs 

he{t)     ^-^     Hreioj), (2.13) 

ho{t)    <—^   iHimiuj), (2.14) 

sgn{t)    <—>    vj, (2.15) 

the Fourier transform of (2.11) and (2.12) is 

2 
iHim{oj)     =     Hre{oj)*—, (2.16) 

2 
Hreiuj)     =     iHimH*—. (2.17) 

lU) 

Inserting the definition of frequency-domain convolution into the above two equations yields the Hilbert 
transforms in (2.7) and (2.8). The constant Hre{oo) accounts for singularities in h{t) a.tt = 0. 



2.7 Relationships Between Magnitude and Phase 

Relationships between magnitude and phase are derived by first assuming that H{OJ) is assumed causal, so 
it cannot have poles in the lower-half of the complex frequency plane. This is because the evaluation of 
the inverse Fourier transform for negative times would require a contour in the lower half of the complex 
frequency plane. Next, assume that H{ui) has no zeros in the lower half of the complex frequency plane so 
that its logarithm is also causal. This is known as the minimum phase condition and it will be explored in 
detail below. Writing the transfer function in terms of the magnitude a(w) and phase 6{u>), 

H{uj) = exp{-a(cj) - ie{uj)}, (2.18) 

allows the negative of its logarithm to be expressed as 

-lnH{u)^a{uj) + ieiuj),. (2.19) 

The function -InH{u>) is causal, which allows a(w) and ^(w) to be related according to (2.7) and (2.8), 

e(w)    =    -n{a{oj)} (2.20) 

a(w)    =    a{oo)+-H{e{uj)} (2.21) 

2.8 Interpretations of the Minimum Phase Condition 

One interpretation of the minimum phase condition, which is accepted by many as the definition, is that 
H{oj) may not have zeros in the lower half of the complex frequency plane [9]. This condition insures that 
the system's inverse transfer function is also causal because H~'^{w) will have no poles in the lower plane 
if H{aj) has no zeros there [11]. The inverse impulse response, :F-^{ff-^(w)}, is only causal when H{ui) is 
minimum phase. Zeros in the lower half of the complex frequency domain create phase shifts in the transfer 
function as frequency is varied along the real axis, which is the hallmark of a nonminimum phase function. 
In particular, passing beneath a zero in the lower half of the plane creates a phase shift of (-TT) [12]. One can 
show that as frequency is varied from oo to 0, a nonminimum phase function experiences a greater positive 
phase shift than a minimum phase function with the same magnitude. This is the source of the minimum 
phase adjective [13]. 

Further insight into the minimum phase condition may be gained by expressing a nonminimum phase 
transfer function as a product of a minimum phase function, Hmp, and an all-pass function Hap, according 
to [14] 

Hnmp{<^) = Hap{w)Hmpitj). (2.22) 

Each of the two functions on the right must satisfy the causality and real-valued conditions. In addition, 
the all-pass function must have a unit magnitude at all frequencies, 

\Hap{uj)\ = 1. (2.23) 

Therefore, each nonminimum phase function has an associated minimum phase function that has the same 
magnitude but a different phase. 

One useful form of the all-pass function is given by Victor [14], 

Hap{uj) = e"^''Y[P{uj,uj). (2.24) 
i 

The exponential term is recognized as a time shift D that creates a pure delay in response. For simplicity, 
we shall henceforth assume that time has been referenced to the first occurence of an output signal, so that 
D = 0. The factors are defined as _ 

P(^,„)^^iZil. (2.25) 
•^ CJ -Uj 



These factors and their product are sometimes referred to as the Blaschke factors and product [15]. In order 
for Hap to satisfy the causaUty and real-valued conditions, the Blaschke product must be carefully chosen. 
To satisfy the causality condition, the poles should be in the upper plane. This requires that S{wj} < 0. To 
satisfy the real-valued condition, the Blaschke product must have the property indicated in Equation 2.4, 

^P{uj,Uj)=^P*{-uj,Ui). (2.26) 
j 3 

This may be achieved by either choosing the Blaschke factors in pairs of the form P{w,Uj) and P{w,Uk), 
where 5R{uj} = -^{uk}, or by requiring a single factor to have a pure imaginary Uj. 

Time-domain descriptions of the minimum phase condition have received less attention in the literature 
but are interesting and useful. The present work shall explore a description that was presented by Eisner [16] 
and involves the output energy of the system. Suppose that the integrated energy in the impulse response 
up to time T is given as 

Eh= f   \h{t)\Ut. (2.27) 

Next, suppose that H{w) is multiphed by a causal all-pass function, Hap{oj), and the resulting time-domain 
response is g{t). Then Parseval's Theorem may be used to prove the inequality 

Eh>Eg. (2.28) 

This implies that any multiplication by an all-pass function has the effect of decreasing the energy that has 
arrived up to a T. The key implication of this result for the present work is that the response energy in a 
minimum phase system integrated up to time T is greater than that of a nonminimum phase system with 
the same frequency-domain magnitude. 

10 



Chapter 3 

Expansions of Transfer Functions 

3.1    Implicitly causal expansions 

Analytical formulations of the causality condition that are used in later chapters are based on the following 
identities [17]: 

W{sin(w<)}    =    -cos(wi), (3.1) 

?^{cos(a;<)}    =    sin(wi). (3.2) 

The causality conditions in (2.7) and (2.8) are identically satisfied by the following Fourier series expansion 
of a transfer function: 

H{.) = ^Ke^(^^ (3.3) 

over a frequency band LJQ < u) < [UQ + 20). We shall refer to this series as implicitly causal because it is 
causal for any choice of complex-valued Fourier coefficients. A direct verification that this series satisfies the 
causality condition requires an inverse Fourier transform to obtain the impulse response, which is 

M<) = EM(<-^). (3.4) 
n=0 

This is an evenly spaced series of delta functions that begins at i = 0 and ends at t = NTT/CI. Since (3.3) 
is only required to represent the function over a range of positive frequencies, the real-valued condition may 
be automatically satisfied by using (2.4) to define the transfer functions at negative frequencies. The series 
in (3.3) was used by Sarkar [18], and it is equivalent to a numerical evaluation of the Hilbert transform by 
Fourier transform methods [10, 19]. 

3.2    Implicitly causal and minimum phase expansions 

This approach may be used to derive an implicitly minimum phase and causal series, which we have not 
found in the open literature. This extension is derived from a causal Fourier series for the natural logarithm 
of the transfer function, 

ln^(a;) = |;/.„exp(^|^) (3.5) 

Taking the exponent of both sides yields an implicitly causal and minimum phase expansion, 

r N 
H{(jj) — exp 

Ef—imruj\ 

,n=0 ^ ' 

(3.6) 
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Chapter 4 

Interpretation and Identification of 
Minimum Phase Reflection 
Coefficients 

If the acoustic reflection coefficient is minimum phase, then the causality condition can be used to reconstruct 
its phase from its magnitude. Such reconstructions are useful when environmental conditions obscure the 
phase, which is vital to understanding the dynamics of the reflecting object. However, the reconstructions are 
usually impossible because one cannot be sure that the reflection coefficient is minimum phase. The present 
work addresses this difficulty by formulating a time-domain description of the minimum phase condition 
and by identifying classes of submerged objects that always create minimum phase reflection coefficients. 
Numerical examples are used to confirm the analytical findings and to illustrate their applicability to objects 
that reflect sound with a wide range of magnitudes. 

4.1    Introduction 

It is often the case in experiments and sensing activities that the magnitude of a reflected or transmitted 
acoustic wave is more easily measured than its phase. While the magnitude can be accurately estimated 
from suitable time averages, ambient noise as well uncertainties in target and receiver locations conspire to 
contaminate the phase over broad frequency bands. These factors typically leave the experimentahst with 
nothing but an accurately measured reflection coefficient magnitude over the frequency range of interest. 
If the phase of the reflection coefficient was known, the complex valued reflection coefficient could be used 
to determine dynamics properties of the object that enhance its identification. For this reason, the present 
work is concerned with the finding of a refiection coefficient phase from its magnitude using causality. 

Recently, the problem of recovering nonminimum phase from the magnitude of a transfer function has 
received increased attention. Sarkar [18] presented a method that relies on a Fourier series expansion of the 
real and imaginary parts of the transfer function. The Fourier coefficients are initially chosen by recovering 
the minimum phase and are then iteratively adjusted so that the magnitude of the transfer function matches 
a measured value. While this technique is useful in examples involving the antenna radiation-power patterns 
and microwave filters, it does not produce correct results for the structural acoustics problems considered 
here. The fundamental reason is that the reflection coefficient phase does not exhibit the same frequency 
characteristics as the phases in the electromagnetic examples considered by Sarkar. 

The causality condition has been used to relate portions of transfer functions that arise in acoustic 
radiation problems. Such problems are often characterized by the frequency-dependent radiation impedance 
of a wetted surface, defined here as the ratio of surface pressure to velocity. Causality may be generally used 
to relate the real and imaginary parts of this transfer function, as was first suggested by Mangulis [1] and 
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used by Radlinski [2]. In these applications, the causahty condition requires that an acoustic pressure on 
the surface cannot be produced until it acquires a nonzero velocity. 

The one-dimensional acoustic reflection and transmission problems considered here are more complex 
than the radiation problem previously considered because they typically involve two transfer functions. The 
first is the mechanical impedance of the object, defined here as the ratio of applied force to velocity. For this 
transfer function, causality requires that the object cannot apply a stress to the fluid at its wetted surface 
until it acquires a velocity. The second transfer function is the reflection coeflacient, deflned here as the 
ratio of the reflected wave amplitude to the incident wave amplitude. Here, causality requires that waves 
may not be reflected from an object before an incident wave arrives. Since the object impedance and the 
reflection coefficient are algebraically related, causal impedances produce causal reflection coefficients. These 
ideas were first explored by McDaniel [6] for one-dimensional acoustic refiections from mass-spring-dashpot 
systems. 

The first goal of this chapter is to interpret the minimum phase condition for the reflection of a plane 
wave normally incident on an impedance surface. This is achieved by reviewing existing descriptions of 
the minimum phase condition, which was done in the previous section, and describing a new time-domain 
interpretation. The second goal is to identify two classes of submerged objects that produce minimum phase 
refiection coefficients. The first class consists of objects that effectively transfer velocity and the second class 
consists of objects that effectively transfer force. 

4.2    A Response-Based Description of the Minimum Phase Con- 
dition 

In this section, a time-domain description of the minimum phase condition is presented that complements the 
descriptions in the previous section by giving physical insight into the time-domain response of nonminimum 
phase functions. For clarity, the discussion begins with a simple form of the all-pass function in Equation 
2.24. Following discussion of this example, a generafization is presented. 

Consider a single Blaschke factor, 

HapH - ^^- (4-1) U) — u* 

The real-valued condition in (2.4) leads to the condition that u be pure imaginary.  Writing u = iuu the 
function is expressed as 

F„pM = l-t.,H^^^. (4.2) 

When this function is transformed to the time domain by (2.1), the following simple form results [20]: 

h    m-i ^ ^ < ° (4 3) i^ap[t) - I j(j) _ 2u.e-».*    t>0   ' ^ ' ' 

The frequency-domain multiplication of the all-pass and minimum phase functions in (2.22) amounts to a 
convolution in the time domain, 

hnmpit) = hap{t) * hmp{t) (4-4) 

Using Equation 4.3, the nonminimum phase impulse response is 

hnmpit) = hmpit) - 2Ui [e""^' * hmp{t)] ■ (4-5) 

Therefore, the nonminimum phase response is a sum of the minimum phase response and the response of 
the minimum phase system to an additional exponential forcing function. 

Generalization of this result to the general case is conceptually straightforward. The all-pass function in 
(2.24) is cast in the form 

Hap{uj) = l-Hrem{0j). (4-6) 
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Figure 4.1: A schematic of the one-dimensional reflection and transmission of acoustic waves by a passive 
linear object. 

Substituting (4.6) into (2.22) gives 

or, in the time domain, 
T'nmpy^j — i^mpi^j      f^remy}) '^ i^mp\'')- 

(4.7) 

(4.8) 

These results indicate that the nonminimum phase impulse response is the sum of the equivalent minimum 
phase impulse response and the response of the minimum phase system to a forcing function of ftrem(0- 

It is interesting to note that this forcing function, hrem{t), is causal and real-valued. One may observe the 
real-valued property by evaluating the real and imaginary parts of (4.6) at negative and positive frequencies. 
These evaluations lead to 

Hremiu^) = H;,^{-W). (4.9) 

The remainder function is recognized as causal by taking the inverse Fourier transform of (4.6), 

hrKm(t) = 5(t) — ha "remit) = 5(t) - hap{t). (4.10) 

Because 5{t) and hap{t) are both causal, hrem{t) must be causal. 

4.3    A Minimum Phase Condition for the Reflection Coefficient 

In this and the following sections, the minimum phase condition is explored for the reflection coefficient of a 
passive object immersed in an infinite waveguide. For clarity, the one-dimensional problem shown in Figure 
4.1 will serve as the basis for discussion. In this figure, the object is positioned in an infinite waveguide of 
cross-sectional area A that contains a fluid with sound speed c and mass density p. Forces are transmitted 
between the object and the fluid via two rigid massless pistons. The object is insonified by an incident wave, 
creating reflected and transmitted waves that propagate away from the object. 

In the frequency domain, the dynamic properties of the object are completely described by an impedance 
matrix that relates forces and velocities at the ports labelled 1 and 2 in the flgure according to 

r Fi(a;) \ 
I   F2{UJ)   ] 

Znico) 
Z21{UJ) 

Zu{i^) 
^22 H 

r T4(a;) 1 
I V2{w) /' 

(4.11) 

where Fi and F2 are the forces applied to the object by the fluid in the directions of the velocities Vi and 
V2, all of which are deflned as positive in the x direction. Reciprocity requires the impedance matrix to 
be symmetric, so that Zi2{'^) = -^21 (w) .   The effective impedance seen by the incident wave is simply 
Zeff = F2/V2. 
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This effective impedance is found by noting equal and opposite forces between the object and the fluid at 
port 1 and by noting that the fluid to the left of the object requires the ratio Fi/Vi = —Zfi, where Zfi = pcA. 
Algebraic combination of this result with (4.11) gives the effective impedance seen by the incident wave, 

Zeff - Z22 - Y^f^. (4.12) 
Zii + Zifi 

The effective impedance is the drive-point impedance presented by the object and the fluid to the left 
of the object if the fluid to the right of the object were removed. It has been shown that the drive-point 
impedance of any linear system, electrical or mechanical, belongs to a class of "positive real" functions [21, 9]. 
These functions possess many interesting properties, but the most important to the present discussion is 
that the real part of a positive real function is positive in the lower half of the complex frequency plane and 
on the real frequency axis. This property, which is a direct consequence of causality and passivity, will be 
used in the following sections to identify minimum phase reflection coefficients for two special cases. 

When an incident wave of unit amplitude strikes the object, a reflected wave is created that propagates 
away from the object. The acoustic pressure in the fluid due to this reflected wave is 

Pr(a;,;c) = i^(a;)e^'=(")^ (4.13) 

where R is the reflection coefficient and k = w/c is the acoustic wavenumber. Continuity of force and 
displacement at the right-hand piston face yields an algebraic relationship between the reflection coefficient 
and the effective impedance [22], 

where the normalized effective impedance is 

z,sf{uj) = Zeffiu)/ipcA). (4.15) 

The reflection coefficient is minimum phase when it has no zeros in the lower half of the complex frequency 
plane. One means of satisfying this condition is to require the real part of the numerator to be strictly positive 
or negative in this region, so that it cannot pass through a zero. If either 

!St{zeff{uj)} > 1 for S{w} < 0 (4.16) 

or 
^{^effH} < 1 for »{w} < 0, (4.17) 

then R is minimum phase. Evaluation of these criterion requires a detailed knowledge of the generally 
complex-valued impedance matrix. In the envisioned applications, where only the magnitude of the reflection 
coefficient is measured, one usually knows very little about the impedance matrix and the above criterion 
are not helpful. This difficulty is overcome in the special cases described in the following two sections. 

Before considering these special cases, let us develop some additional physical intuition of the minimum 
phase condition on the reflection coefficient by speciahzing the time-domain descriptions presented in the 
previous two sections. The reflection coefficient may be interpreted as the Fourier transform of the reflected 
pressure due to an incident wave that applies a Dirac pressure distribution to the object at time t = Q. Since 
the magnitude of the acoustic intensity vector for a plane wave is / = p^/ipc), the energy quantity defined 
in Equation 2.27 is proportional to the integrated acoustic energy that has left the object up to time T. 
Therefore, an object with a minimum phase reflection coefficient has the property of reflecting the acoustic 
energy faster than an object with the same magnitude of reflection coefficient but with a nonminimum phase. 

The response-based description of the minimum phase property presented in the previous section also 
provides a physical basis for interpreting the reflection coefficient. In particular. Equation 4.8 can be applied 
to the reflection problem by interpreting hnmp as the pressure reflected by a nonminimum phase object. This 
pressure is a sum of two terms. The first is identified as the pressure reflected when a Dirac incident wave 
insonifles a minimum phase object with the same reflection coefficient magnitude. The second term is the 
pressure radiated by the same minimum phase object when forced by a pressure distribution of -hremit) 
applied to the object. 
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Figure 4.2: A schematic of the system in Figure 4.1 under the assumption that the object perfectly transmits 
velocity. 

4.4    Systems with Perfect Velocity Transfer 

In this section, the reflection coefficient is shown to be minimum phase when the velocities at points 1 and 
2 in Figure 4.1 are equal. This situation is sometimes referred to as "perfect velocity transfer." While it 
is tempting to interpret this as a rigid body condition, one must bear in mind that the object may have 
internal degrees-of-freedom due to internal inertia and flexibility. The condition of perfect velocity transfer 
only requires that the boundary velocities at points 1 and 2 are equal. One example of such an object would 
be a very stiff container with an assemblage of masses, springs, and dashpots inside. 

In order to understand the conditions that lead to perfect velocity transfer, Equation 4.11 is inverted to 
the form 

" Ynioj)    yi2H 1 f Fi{uj)  \ 
Y21{UJ)     722 H   J  \   F2(W)    /' 

where the admittance matrix is the inverse of the impedance matrix, [Y] — [Z]~^. 
leads to the condition 

{Yn-Yi2)Fi = {Y22-Yi2)F2 

For this equation to hold for arbitrary frequency-dependent forces, every element in the admittance matrix 
must be identical so that 

Yvt   Yvt 
Yvt   Yvt 

where the subscripted vt denotes the assumed "velocity transfer" property of the object. Substitution of 
this result into Equation 4.18 yields the simple relation 

I  ^2M  / 

m = 

(4.18) 

Equating the velocities 

(4.19) 

(4.20) 

Fnet — ZvtV, (4.21) 

where the net force acting on the object is Fmt = Fi + F2 and V is either Vi or V2 ■ The velocity transfer 
impedance is simply Z^t — I/Yvt- This impedance acts in parallel to the acoustic impedance of the fluid to 
the left of the piston because the velocities of the fluid and the object are identical. 

A schematic of the reduced system is shown in Figure 4.2. The normalized effective impedance defined 
by Equations 4.12 and 4.15 is simply 

Zeff = l + Zvf (4.22) 

Now, we use the previously quoted result that the drive-point impedance, z^t, of a passive linear system is a 
positive real function. Its real part is always positive in the lower half of the complex frequency plane and 
the real part of Zeff is always greater than unity. Therefore, the condition in Equation 4.16 is met and the 
reflection coefficient is always minimum phase. 

To illustrate this result, let us consider objects that satisfy the velocity transfer assumption. For these 
examples, the impedance of the object is generated by the following Fourier series with real-valued Fourier 
coefficients: 

N /■ \ 
z„t(w) = ao +^flnexp (-—— j . (4.23) 

n=l ^ ^ 
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This function satisfies the causality condition in (2.7) and (2.8), since the Hilbert transform of sin(n7rw/f2) 
is cos(n7rw/fi). For n > 0, the coefficients are chosen by 

_ ao(l - 2rn) 
an j^ , (4.24) 

where r„ is a random number that is uniformly distributed over the interval 0 < r„ < 1. This selection 
insures that ^{zyt} > 0 and the system is therefore passive. In all of our simulations, we set A'' = 50. The 
leading term, ao, was used to control the magnitude of the impedance. 

In the first example, we set ao = 0.1 to simulate an approximately pressure-release surface. The real and 
imaginary parts of the object impedance obtained by using this value in Equations 4.23 and 4.24 are shown 
in Figure 4.3. The refiection coefficient was evaluated using Equation 4.14. The magnitude and phase of 
the reflection coefficient are shown in Figure 4.4. In the envisioned applications, the phase would not be 
known and causality would be used to predict it from the magnitude. To this end, a causally predicted phase 
computed by inserting the magnitude of the reflection coefl5cient in (2.20). This phase coincides with the 
actual phase in Figure 4.4, indicating that the reflection coefficient is indeed minimum phase. 

To further illustrate this result, an object with a large reflection coefficient magnitude was simulated by 
choosing OQ = 50. The real and imaginary parts of the resulting impedance are shown in Figure 4.5, where 
we see a magnitude that exceeds 0.95 everywhere. The magnitude and phase of the reflection coefficient 
are shown in Figure 4.6. Again, the causally predicted phase coincides with the actual phase because the 
reflection coeflScient is minimum phase. 

4.5    Systems with Perfect Force Transfer 

This section describes the minimum phase reflection coefficient that results when an object transmits force 
perfectly. To achieve this limit, the forces applied to the object by the fluid must be equal but opposite, 
Fi = -F2. Physically, this condition results when the mass of the object is small. Newton's second law then 
requires the net force on the object to be zero. One example of such a system is an air bubble in water. 

Applying this condition to Equation 4.11 results in 

{Zn + Zi2)Vi = -{Z12 + Z22)V2. (4.25) 

For this equation to hold for arbitrary frequency-dependent velocities, the impedance matrix must have the 
form 

Zft    -Zft 
-Zft      Zft \ ' 

where the subscripted ft denotes the assumed "force transfer" property of the object. 
Substitution of this result into Equation 4.11 yields the simple relation 

[Z] (4.26) 

Fi = -F2 = Zft{V2-Vi). (4.27) 

Recalling that Fi = —ZfiVi, one finds that this impedance acts in series with the acoustic impedance of the 
fluid to the left of the piston. Therefore, the normalized effective impedance is 

\-VZft 

A schematic of the reduced system is shown in Figure 4.7. This reduced system can also be represented by 
parallel admittances, so that the effective normalized admittance is j/e// = l + yft- The reflection coefficient 
is found from Equation 4.14, 

i? = i^M/. (4.29) 
1 + Veff 

It has been shown [21] that the drive-point admittance is also a positive real function. Therefore, its real 
part is always positive in the lower half of the complex frequency plane and the real part of j/e// is always 
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Figure 4.3:  Real and imaginary parts of normalized object impedance, Zvt, for an object that transfers 
velocity and has a low magnitude of impedance. 
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Figure 4.4: Magnitude and phase of the reflection coefficient for an object that transfers velocity and has 
the impedance shown in Figure 4.3. Causality is used to recover the phase from the magnitude. 
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Figure 4.5:  Real and imaginary parts of normalized object impedance, Zyt, for an object that transfers 
velocity and has a high magnitude of impedance. 
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Figure 4.6: Magnitude and phase of the reflection coefiicient for an object that transfers velocity and has 
the impedance shown in Figure 4.5. Causality is used to recover the phase from the magnitude. 
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Figure 4.7: A schematic of the system in Figure 4.1 under the assumption that the object transmits force 
perfectly. 
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greater than unity. The condition in Equation 4.17 is met and the reflection coefficient is always minimum 
phase. 

This finding will be illustrated by generating random admittances in the same way that random impedances 
were generated in the previous section. The admittance of the object is generated by the following Fourier 
series with real-valued Fourier coefficients: 

yft (w) = ao + ^ o„ exp ( —^ j , (4.30) 

which is causal and real-valued in the time domain. The passivity condition is satisfied by the choice of o„ 
given in Equation 4.24. Again, we set AT = 50 in all of the examples. 

Choosing Go = 50 creates a large object admittance that results in a small reflection. The real and 
imaginary parts of the object admittance obtained by using this value in Equations 4.30 and 4.24 are 
shown in Figure 4.8. In order to show that the reflection coefficient for this object is minimum phase, it 
was evaluated using Equation 4.14. The magnitude and phase of the reflection coefficient computed from 
Equation 4.29 are shown in Figure 4.9. As in the previous section, a causally predicted phase is computed by 
inserting the reflection coefficient magnitude in (2.20). This phase coincides with the actual phase in Figure 
4.9, indicating that the reflection coefficient is indeed minimum phase. 

This finding persists even when the object admittance is very low. Choosing OQ = 0.1 creates a low 
admittance whose real and imaginary parts are shown in Figure 4.10. Figure 4.11 shows the magnitude 
and phase of the associated reflection coefficient. Again, the agreement between the actual phase and the 
causaUy predicted phase confirms the analytical result that the refiection coefficient is minimum phase. 

4.6    Observations 

A response-based description of the minimum phase condition in the time domain has been developed 
and applied to the one-dimensional interactions of acoustic waves with a submerged object. This description 
decomposes the nonminimum phase reflection into the reflection from an equivalent minimum phase structure 
and the radiation created by a forcing function applied to the object. An energy-based description of the 
minimum phase condition presented by Eisner has also been valuable. In particular, this description reveals 
that an object with a minimum phase reflection coefficient returns energy to the fluid sooner than an 
equivalent nonminimum phase object. 

A condition on the impedance matrix was derived that guarantees a minimum phase reflection coefficient. 
While the condition is impossible to evaluate in cases where only the reflection coefficient magnitude is mea- 
sured, it did lead to two special cases. In particular, it was shown that submerged objects that either transmit 
force or velocity from one body of fluid to another always create minimum phase reflection coefficients. The 
proofs were based on the positive real properties of drive-point impedance and admittance. The numerical 
examples confirmed these analytical results for structures with small and large reflection coefficients. 

The results of this one-dimensional study are expected to be useful in two contexts. First, the results 
will be applicable to problems involving acoustic transmission through nonhomogeneous layers that satisfy 
either the force or velocity transfer condition. Here, the results allow one to characterize the frequency- 
dependent layer properties by only measuring the magnitude of reflected sound. Second, the results will 
provide a basis for analyzing more complex three-dimensional scattering problems. For example, monostatic 
scattering measurements for three-dimensional structures can be modelled by replacing the structure with 
an effective impedance screen that is perpendicular to the incident wave front. This should be addressed in 
future work. 
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Figure 4.8: Real and imaginary parts of normalized object admittance, yft, for an object that transfers force 
and has a high magnitude of admittance. 
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Figure 4.9: Magnitude and phase of the reflection coefficient for an object that transfers force and has the 
admittance shown in Figure 4.8. Causality is used to recover the phase from the magnitude. 
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Figure 4.10: Real and imaginary parts of normalized object admittance, y/t, for an object that transfers 
force and has a low magnitude of admittance. 
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Figure 4.11: Magnitude and phase of the reflection coefficient for an object that transfers force and has the 
admittance shown in Figure 4.10. Causality is used to recover the phase from the magnitude. 
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Chapter 5 

Causal Removal of Phase Noise 

5.1 Introduction 

Response data measured as the excitation frequency is varied may be noncausal. For example, consider a 
one-dimensional acoustic reflection experiment in which the frequency of an incident wave is varied and the 
reflection is measured at each frequency, giving a complex-valued reflection coefficient. If the location of 
either the source or receiver is incorrectly measured from frequency to frequency, the phase of the reflection 
coefficient will be in error and a portion of this error is likely to be noncausal. The magnitude will not be 
affected. In multidimensional problems, the situation is not so clear but it appears that experimental errors 
most often aff'ects the phase of the scattered pressure and not the magnitude. 

In this chapter, a method is proposed for correcting phase errors with the causality condition and is 
applied to the one-dimensional reflection experiment. The approach finds the causal reflection coefficient 
that is closest to the measured noncausal one by a least-squares fit of an implicitly causal expansion to the 
measured values at each measurement frequency. The accuracy of the method improves when the number 
of measured frequencies is greater than the number of Fourier harmonics in the data. 

5.2 Analytical Formulation 

The reflection coeflScient is causal because one does not expect a reflected wave until the incident wave 
strikes, but non necessarily minimum phase. For this reason, the imphcitly causal expansion in (3.3) is used, 

N /     ■ \ r,/  X     v^ f—in7roj\ 
R{uj) = Y,rnexpl——\ (5.1) 

n=0 ^ ' 

This expansion is required to match the experimentally measured reflection coefficient, R, at each measured 
frequency, so 

N /     ■ \ 

r„ exp f ^ j = /?(w™) (5.2) 
n=0 ^ ' 

for m = 1,2,... M. This results in the matrix equation 

where the matrix is given by 

Er = R (5.3) 

E„,= |'"^-J""".| (5,4) 
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Figure 5.1: Magnitude of the measured reflection coefficient for the NRL experiment. 

When M — {N + 1), the system is perfectly constrained and the causal fit will reproduce the measured 
signal identically. For this approach to be effective, M must be significantly greater than (A'^ + 1). The 
requirements on M will vary depending on the amount of noise in the data, as illustrated by the examples 
below. If M > {N + 1), (5.3) is solved in a least squared sense for the Fourier coefficients, which are 
substituted into (5.1) to recover the reflection coefficient. 

The approach contains an interesting self-consistency check which, in our numerical experiments, has 
been very useful in assessing the accuracy of the method without knowing the answer. If M > (AT + 1), the 
least squares solution of (5.3) does not guarantee that the magnitude of the calculated reflection coefficient 
will match the measured magnitude. The extent to which this agreement occurs has been an excellent 
indicator of the accuracy of the recovered phase. 

5.3    Application to NRL Scattering Data 

The approach was applied to experimental data taken by NRL.-^ The experimental involving multistatic 
acoustic scattering by a ribbed cylindrical shell with many attached internal oscillators. The farfield acooustic 
reflection coefficient was measured. Details of the experiment may be found in [23]. The magnitude and 
phase of the reflection coefficient versus insonification angle and frequency are plotted in Figures 5.1 and 
5.2. These plots illustrate the great complexity of structural dynamics that was introduced by the attached 
oscillators, making this data a significant challenge to the proposed method. 

^The PI is extremely grateful to NRL for supplying the data, help in using and interpreting the data, eind suggestions on 
this appUcation. 
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Figure 5.2: Phase of the measured reflection coefficient for the NRL experiment. 
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Figure 5.3: Effect of adding noise to the phase of the measured reflection coefficient for the NRL experiment. 

Calculations not presented here verified that the measured data satisfied the causality condition to within 
the numerical accuracy of evaluating the Hilbert transform. Random noise was added to the phase to 
simulate uncertainties in source or target location. This noise had a normal distribution with a zero mean 
and 1.5 standard deviation. Figure 5.3 compares the original phase to the simulated noisy phase at the first 
insonification angle of ^ = 10°. The number of measurement frequencies was M = 771 and the truncation in 
(5.1) was N = 100, so that the system of equations in (5.3) was overly constrained. The method recovered 
phase to the high accuracy shown in Figure 5.4. This same process was repeated for a different insonification 
angle, 6 - 120°, and these results are shown in Figures 5.5 and 5.6. The accuracy is somewhat less than 
before, however many gross features of the phase were recovered. 
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Figure 5.4:   Causal removal of noise from the phase of the measured reflection coefficient for the NRL 
experiment. 
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Figure 5.5: Effect of adding noise to the phase of the measured reflection coefficient for the NRL experiment. 
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Figure 5.6:   Causal removal of noise from the phase of the measured reflection coeflicient for the NRL 
experiment. 
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Chapter 6 

Vibrational and Acoustic Control by 
Causal Power Absorbers 

One means of vibrational and acoustic control is to attach controllers or structures that absorb power, which 
tends to lower the total energy of the system and globally reduce sound and vibration. This is especially 
effective in reverberant problems. The approach is described by [24]-[28]. Unfortunately, the absorber 
that absorbs the maximum amount of power is usually noncausal and can never be physically realized in 
transient problems. This chapter remedies the situation by finding causal impedances that discretely match 
the optimal ones in a frequency band. For simplicity, the absorber is assumed here to interact with a two-port 
system, but the analytical framework presented here will extend to systems with more degrees-of-freedom. 

6.1 Analysis of Power Absorption by a Two-Port System 

Consider a two-port system with port an excitation at port 1 and an absorber attached at port 2. Linearity 
leads to equations of motion of the form 

{   i^2    J [   22!      -^22   j   I   ^2    1 ^^'^^ 
where Fi_2 are forces and Vi,2 are velocities at ports 1 and 2. 

The absorber presents an impedance defined by 

F2 = -ZaV2 (6.2) 

Time-averaged power flow to the absorber is 

Pout = l^{-F2Vn (6.3) 

Combining(6.1), (6.2), and (6.3) relates the power flow to the impedances by 

6.2 Absorber Impedance for Maximum Power Absorption 

Analysis of (6.4) reveals that the maximum power absorption occurs when 

ZaH = Z*22{0J). (6.5) 
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This result is known as impedance matching in the electrical literature. One major advantage of maximizing 
the absorbed power is that it only involves measuring an input impedance and does not require a knowledge 
of the disturbance. However, the absorber impedance in (6.5) violates the causality conditions in (2.7) and 
(2.8) for causal structural impedance Z22- 

6.3    Causal Impedance for Maximum Power Absorption 

Violation of the causality condition for impedance matching is addressed here by expanding the absorber 
impedance in an impUcitly causal and minimum phase Fourier series given in (3.6), 

Za (w) = exp 
N /     . ^ 

—mnuj \ El —mil 
^„expf-^ 

,n=0 ^ -) 
(6.6) 

over the band WQ < w < (0)0+20). The Fourier coefficients are required to satisfy (6.5) at selected frequencies 

N 

.n=0 

where m = 1,2,... M. Taking the logarithm of both sides yields the linear system 

Ef-imrujm\ 
^22('^m), (6.7) 

Ez = ln(Z;2) (6.8) 

where the matrix is given by 

(EW = ...p(-'"'-„^"""). (6.9) 

forp=l,2,...(iV + l). 
This system is solved for the vector of Fourier coefficients, z, which is substituted into (6.6) to compute 

the attachment impedance. The system is perfectly constrained when the number of frequencies is equal to 
the number of Fourier coefficients, or M = (A'' +1). In accordance with the discussion in 2.3, the frequencies 
are chosen over a positive-valued range and the absorber impedance for negative frequencies is found by the 
conjugate reflection in (2.4) that assures a real-valued impulse response. 

6.4    Causal Impedance for Maximum Net Power Absorption 

The above approach is very effective for transient disturbances that terminate before energy has an oppor- 
tunity to interrogate the absorber. In those case, the power input from the disturbance is does not vary 
with the design of the absorber. For disturbances that do interrogate the absorber, one has the possibility 
of increasing the power absorbed by increasing the power from the disturbance. Often, the average vibra- 
tional power of the system will increase as a result of attaching the absorber. This is usually not desired, as 
absorbers typically attempt to achieve global control by absorbing power. 

We have investigated one solution to this problem that is based on minimizing the net power into the 
system as opposed to maximizing the absorbed power. The absorber impedance that minimizes the net 
power into the system is also found to be noncausal, however a causal approximation is found using the 
approach from the previous section. 

The analysis begins by formulating the time-averaged net power flow to the two-port system, 

Pnet = Pin — Pout (6.10) 

35 



where 

Pin    =    \^{F,Vn (6.11) 

Pout    =    \^{F2Vn (6.12) 

(6.13) 

Writing Za = Ra + iXa, the absorber impedance that minimizes the net power into the system is found from 

= 0. (6.14) ■'net        ■'net 

Ra -^a 

Evaluation of these conditions gives a purely imaginary absorber impedance of 

R22 
Za = ^lX^2^^-X22j (6.15) 

This impedance essentially reflects the vibrational energy and does not absorb it. 

6.5    Numerical Examples 

In these examples, drive-point impedances of the 2-port system were generated by randomly choosing 10 
Fourier harmonics and constructing them from (3.3). Since passivity requires that a drive point impedance 
has a positive real part, the phase of the randomly generated transfer functions was scaled to lie between 
-0.9(7r/2) < 6 < 0.9(7r/2). The transfer impedance were generated by taking the reciprocal of admittances 
generated by randomly choosing 10 Fourier harmonics and and evaluating (3.3). The absorber impedances 
were found by least squares fits at 10 frequencies and then the expansions were evaluated at 500 frequencies 
for plotting purposes. 

Figure 6.1 shows the real and imaginary parts of an absorber impedance chosen for maximum power 
absorption. The causal approximation was found by using the expansion in (6.6) with the Fourier coefficients 
found by evaluating (6.8). At the circled data points, which indicate frequencies at which (6.6) was required 
to match the optimal impedance, the optimal and causal impedances match. At other points, the impedances 
differ. The plot of absorbed power in Figure 6.2 shows that introduction of the causality condition reduces the 
power absorbed, as expected. However, by increasing the number of terms in the Fourier series the causal 
approximation converges to the optimal transfer function. Note that the causal impedance occasionally 
becomes active, injecting a net power into the system. This represents a tradeoff in the satisfaction of 
causality. This process was repeated with the goal of minimizing the net power in, in accordance with the 
absorber impedance in (6.15). The results are shown in Figures 6.3 and 6.4, where the same observations 
apply. 
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Figure 6.1: Absorber impedances corresponding to optimal but noncausal power absorption and causal 
power absorption. Circles denote frequencies at which the optimal and causal impedances were constrained 
to match. 
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Figure 6.2: Power absorbed by the impedances in Figure 6.1. Circles denote frequencies at which the optimal 
and causal impedances are constrained to match. 
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Figure 6.3: Absorber impedances corresponding to optimal but noncausal power absorption and causal 
power absorption. Circles denote frequencies at which the optimal and causal impedances were constrained 
to match. 
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Figure 6.4: Power absorbed by the impedances in Figure 6.3. Circles denote frequencies at which the optimal 
and causal impedances are constrained to match. 
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Chapter 7 

Causal Interpolation and 
Extrapolation 

7.1    Introduction 

In this chapter, a causal reconstruction method for the frequency response of damped structures is developed 
on the basis of existing sampling theorems. Such reconstructions are useful to understanding the detailed 
dynamic properties of damped structures. The frequency response should satisfy the causality condition 
and the real-valued condition when it is taken to the time domain. The reconstruction proposed here is 
made causal by taking the frequency samples to the time domain, zeroing out the values at negative times, 
and then returning to the frequency domain. The method guarantees satisfaction of causality condition 
by eliminating any non-zero values at negative times. An error analysis is carried out and indicates that 
the accuracy of the method increases with the damping ratio. Numerical examples are used to confirm the 
analytical findings and to illustrate its capability to reconstruct frequency responses in a frequency range. 

The origins of modern sampUng theory can be traced back to two persons: Shannon and Kotel'nikov. 
Shannon's paper [29] has been widely recognized as the first paper on modern sampling theory from the 
engineering perspective. However, it was later reaUzed that Shannon's result had been discovered in 1933 
by a Russian engineer Kotel'nikov [30]. He applied it in communication engineering earlier than Shannon. 
However, there is no doubt that it was Shannon's paper that triggered a flood of work on this topic, which 
eventually produced a large body of results on sampling theorems and their applications. 

Following their footsteps. Yen [31] derived the minimum norm solution to this problem. It had been 
recognized for a long time that the minimum-norm solution was ill-conditioned [32]. To correct this. Wing- 
ham [33] proposed a singular value decomposition method to provide a series expansion that can identify 
components of the basis functions that are poorly represented by the sampled data. Soumekh proposed 
the unified Fourier reconstruction (UFR) method [34], which reconstructs the spatial function by low pass 
filtering the sampled data. More detailed reviews on the state-of-the-art in sampling theory are given by 
Unser [35] and Gacia [36]. 

The sampling theorems have been applied in many branches of science and technology such as, acoustical 
holography [37], nuclear magnetic resonance imaging [38], and approximation of geophysical potential fields 
[39]. However, their application to frequency response reconstruction of damped structures has been rare. 
The reconstruction of frequency response of damped structures has two unique futures that distinguish itself 
from the other applications. One is that the impulse response in the time domain, which corresponds to 
the inverse Fourier transform of frequency response should be real-valued. The other is that the impulse 
response function should be causal, i.e., response is always zero for negative time. 

These two distinct features lead to some special requirements that have not are not easily satisfied by 
existing reconstruction methods. In what follows, two well established reconstruction bases, the trigonometric 
basis and the sine bases, are reviewed as background. A new reconstruction basis is presented in section 7.2. 
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In the derivation, we take the frequency samples to the time domain and zero out the values at negative 
times. Therefore, the causality condition is implicitly satisfied. Errors generated by the proposed method 
are analyzed in section 7.3. These errors come from both the time domain truncation and the basis function 
truncation. Numerical examples in section 7.4.1 show that the proposed method generates smaller errors 
than existing methods when a causal frequency response from a viscously damped structure is used as a 
testbed. 

7.2    Causal sine basis 
In this section, a new transfer function interpolation basis is derived that satisfies the causality requirement. 
To reduce the complexity, we assume the samples are evenly spaced. The derivation begins with the following 
delta function summation describing the sampled pulses as defined by Papoulis [40] 

oo 

Hp{uj) =   y^  J?(nwo)5(w - nwo). (7.1) 
n=—oo 

Taking the inverse Fourier transform of the above equation and using the Poisson sum formula [9] yields 

oo       . 

^vit)    =     E   ^H{nu;o)e'^'^°' (7.2) 
ii=—oo 

oo 

=   T/TT  E  M< + 2nT), (7.3) 
n=—oo 

where T = TT/WQ throughout this subsection. 
Clearly, (7.3) is a periodic function with period 2T.  If the time domain impulse response h{t) is zero 

outside [0,2T], filtering (7.3) with a window function yields the exact impulse response h{t) 

Ht) = ^hp{t)wit), (7.4) 

where the window function is given by 

,...^ - / 
0   otherwise 

.^,      r 1   0<f<2T ,„.. 

Taking the Fourier transform of (7.4) leads to 

H{ij) = ^Hp{uj)*J'{wit)}. (7.6) 

Substitution of the Fourier transform of w{t) 

yields 

^{,(,)} = ^_^Ili-Ile-^T. (7.7) 

H(-) = ^W-)}*{^^e--}, (7.8) 

where * denotes convolution. 
The definition of the delta function requires that 6{uj - nu)o)*F{cj) = F{uj - nwo)- Substituting (7.1) into 

(7.8) and using this definition gives 

oo 

i?(a;) = 27r  J]   ff(nwo) • 5„(w) • f;„(a;), (7.9) 
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where 5„ is given by 

Tr{io - nwoj/wo 
and En (w) is given by 

E„H=e-'^('^-"'^°). (7.11) 

Equation (7.9) is a shifted form of Shannon's samphng theorem [9]. 
The derivation of (7.9) is based on the assumption that the impulse response is zero outside the interval 

[0,2T]. For a viscously damped structure, the impulse response is not zero beyond 2T, because it decays to 
zero only at infinite time. However, as long as T is large enough, or equivajently WQ small enough, h{t) can 
be approximated as zero beyond 2T, because it decays exponentially. In this case, the transfer function is 
approximated by 

oo 

Fi(a;)«27r   ^   F(nwo)5„(a;)£'„(a;). (7.12) 
n=—oo 

In practical situations, the number of sampled points is limited from -N to N instead of going infinity. 
Thus the transfer function is further approximated as 

N 

Hij{cj) K2n ^ H{nu)o)Sn{uj)En{uj). (7.13) 
n=-N 

It is interesting to note that the new basis functions are combinations of sine functions and trigonometric 
functions. The causality condition is imphcitly satisfied by (7.13)due to low pass filtering via the window 
function in (7.5), which eliminates any nonzero values at negative times. To illustrate this, a causal sine 
function and its inverse Fourier transform are shown in Figures 7.1 and 7.2. It is clear that the function is 
shifted by TT and the function in time domain is always zero at negative times. 

As for the real-valued condition, since the basis functions satisfy 5_n(-w) • E-n{-u)) = «5^(w) • E^{u)), 
the inverse Fourier transform of Eq. (7.13) will be real as long as H{-nu)) = H*{nuj). 

7.3    Error analysis 

The error of the proposed interpolation basis comes from two truncations. One is temporal truncation. 
The frequency spacing determines T, which is the major filter parameter in the time domain. All values 
in the time domain beyond 2T are truncated. The approximation in going from (7.9) to (7.12) reflects 
this truncation error. The other truncation is the series truncation. The number of basis functions which is 
determined by the number of sampled points, is finite instead of infinite. The interpolation basis is truncated 
at the (2A'' + l)th term, where (2A'' + 1) is the number of samples. The approximation in going from (7.12) 
to (7.13) refiects this truncation error. The two truncation errors will be discussed separately in this section. 

7.3.1    Temporal truncation 

To carry out the temporal truncation error analysis, we define two Fourier transform pairs: h{t)'w{t) o H\ {ui) 
and h{t)[l-w{t)] ^ H2{u>) and their interpolation equation Hu and H2i, as in (7.12). Based on the derivation 
in section 7.2, clearly, Hu = Hi. Therefore the temporal truncation error is given by 

n    =    \Hi-H\ = \H2i-H2\<\H2i\ + \H2\ (7.14) 

=    \H2i\ + f      \h{t)\dt. (7.15) 
Jt>2T 

Transforming hi{t) = ^hp{t)w{t) to the frequency domain and using (7.3) yields 

l^il < /       Yl   \Ht + 2nT)\dt. (7.16) 
•'0      n=-oo 
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Figure 7.1: Real and imaginary part of a causal sine function. 
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Figure 7.2: Inverse Fourier transform of a causal sine function. 
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Interchanging the integral and summation in the above equation gives 

\h{t)\dt. (7.17) 
■oo 

Similarly, we have the bound for i?2i, which is 

\H2i\ < f      \h{t)\dt. (7.18) 
Jt>2T 

Substitution of the inequality (7.18) into (7.15) yields 

r-i < 2 /      \hit)\dt. (7.19) 
Jt>2T 

7.3.2    Series truncation 
If the impulse response only has nonzero values in the interval [0,2T], its associated frequency response has 
the important property that 

moj)\<J^£jHiu;)\^d^. (7.20) 

Here we give a short proof of (7.20). If the impulse response is zero outside the interval [0,2r], H{u)) can 
be written as 

/.2T 

Jo 
(7.21) 

Considering Schwarz's inequality generates 

/.2T /.2T 

l-ffMi' < /     \hit)\^dt /     |e-'"f di. (7.22) 
Jo Jo 

It can be further simplified to 

|F(a;)P < 2T /     \h{t)\^dt. (7.23) 

If Parseval's formula is applied to the above equation, (7.20) results. 
As has been mentioned before, the series truncation is due to the approximation in going from (7.12) to 

(7.13). Therefore the error is given as 
r2^\Hi-Hij\. (7.24) 

If the function {Hi - Hij) is taken back to time domain, the temporal function will be zero valued outside 
[0,2T], because the temporal function is filtered by the window function in (7.5). Applying the property 
described in (7.20) leads to 

r2 < W ^ j°° \Hi - Hijl^dc^. (7.25) 

Combination of (7.12) and (7.13) with the above equation generates 

r2 < 

where 

\ 

/OO 

I  ^ H{noJo)'PnM^dw, (7.26) 
■°°   \n\>N 

V'nM = Sn{io)Enioj) (7.27) 
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The total error due to transfer function interpolation includes contributions from both ri and r2- This 
error analysis shows that a smaller WQ leads to a larger T, which consequently reduces the error contribution 
from ri. Or, if the system has a higher damping ratio, the impulse response function h{t) will be smaller 
outside [0,2T]. The error from ri will also be reduced. For the same reason, n will go to infinity if the 
system has no damping. This predicts that the proposed causal sine basis does not work for undamped 
frequency response. 

7.4    Applications of the causal sine basis 

The objective of this section is to provide a better understanding of the properties of the causal sine basis 
set through some illustrative examples. Two examples are presented. The first example uses mass-spring- 
dashpot systems to compare the numerical accuracies among the trigonometric basis. Shannon's basis, and 
the proposed causal sine basis. The second example uses a numerical model of a realistic engineering structure 
from the Harwell-Boeing matrix collection. We use different sampling rates to illustrate the performance of 
the causal sine basis. 

7.4.1    Single degree-of-freedom example 
Here we compare the causal sine basis proposed in section 7.2 with the existing trigonometric basis and the 
sine function basis by using two simple examples. First, we examine a single spring-mass-dashpot structure. 
The system's mass is 1 kg and spring constant is 1 N/m. The damping ratio ( is equal to 0.2. The exact 
transfer function is calculated and plotted in Fig. 7.3. The function is sampled with a frequency spacing 
of 0.16 rad/s within the frequency interval [0,2] rad/s, and the interpolation is carried out using the three 
different basis functions. Relative errors for the causal sine and sine bases are plotted in Fig. 7.4. The 
relative error is determined by the ratio of error norm versus the norm of the true value. The comparison 
between causal sine basis and trigonometric basis is plotted in Fig. 7.5. The interpolations all tend to 
have larger error at the boundary region, and the causal sine basis does not have clear advantage over the 
others near the boundary. However, it is more accurate than the other two near the resonance frequency. If 
one is more interested in response values at resonance frequencies, the proposed causal sine basis would be 
considered preferable. 

We expect the observations from Figures 7.4 and 7.5 to extend to multiple DOFs systems. Here we exam- 
ine another spring-mass-dashpot problem with three DOFs. The system has undamped natural frequencies 
at 1, 2, and 3 rad/s with a modal damping ratio of 0.2 at each mode. Figure 7.6 shows the exact transfer 
function. The response function is sampled at the distance of 0.2 rad/s within the frequency interval [0,4] 
rad/s. The interpolation results from the three different bases are compared in Figures 7.7 and 7.8. Once 
again, the causal sine basis is more accurate than the other two. 
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Figure 7.3: Plot of a transfer function for a single spring-mass-dashpot system. 

In the error analysis section, we found that the accuracy of the method increases with the damping 
ratio. We illustrate this conclusion by changing the damping ratio of the single spring-mass-dashpot system 
and computing the root mean square error for each interpolation. The result in Figure 7.9 supports these 
analytical results. It also shows that the error will increase around the neighborhood of zero damping, which 
means the three methods tend to fail when damping approaches zero. 
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Figure 7.4: Relative errors for the causal sine and the noncausal sine bases for the single spring-mass-dashpot 
system. 
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Figure 7.5: Relative errors for the causal sine and causal trigonometric bases for the single spring-mass- 
dashpot system. 
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Figure 7.6: Plot of a transfer function for a three DOF system. 
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Figure 7.7: Error comparison between causal and noncausal sine bases for the three DOF system. 
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Figure 7.8: Error comparison between causal sine and noncausal sine bases for the three DOF system. 
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Figure 7.9: Root mean square errors from there different interpolation bases versus the damping ratio. 
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7.4.2    Transmission tower example 
In this example, we use a finite element model of a transmission tower from the Harwell-Boeing matrix 
collection. The original numerical model does not include a damping matrix. For the purpose of our 
investigation, a non-proportional damping matrix is added to the model by the following equation 

C = 0.0002K + 40||M1|2D, (7.28) 

where D is a randomly generated diagonal matrix and ||M||2 is the 2-norm of the mass matrix. Here the 
damping matrix C includes two parts; one is the proportional damping term 0.0002K, the other is the 
non-proportional damping term 40||M||2D. 

The exact transfer function of the structure from 0 to 400 rad/s is plotted together with the sampled points 
in the first plot of Fig. 7.10. The function is sampled with a spacing of 5 rad/s apart and the interpolation is 
carried out using the causal sine basis. The corresponding impulse response and the temporal truncation due 
to the samples is illustrated in the second plot of Figure 7.10. As discussed before, the interpolation error 
is affected by the temporal truncation. At this sampUng rate, the temporal truncation is small. Therefore, 
the interpolation errors of both magnitude and phase angle as shown in Figure 7.11 are negligible. The 
causal sine basis tends to produce larger errors near the boundary region, but has greater accuracy in the 
interior frequency range. The error goes to zero at each sampled point indicating the interpolation matches 
the transfer function at each sample. 

After we inrease the frequency spacing to 10 rad/s, we find that the temporal truncation moves towards 
the center of the coordinate, as shown in Figure 7.12). Due to this movement, the error gets larger but is 
still reasonable, as shown in Figure 7.13. For the case when the frequency spacing is 20 rad/s, we find that 
the truncation is significant in the time domain, as shown in Figure 7.14. The results shown in Figure 7.15 
are not as accurate as before. 

To clarify the relationship between temporal truncation and the interpolation accuracy, we tried several 
other frequency spacings and plotted the RMS error with respect to the integral of temporal truncations, 
J ^^\h{t)\dt, in Figure 7.16. It shows an increasing error as temporal truncation increases. However, it 
is more irregular than might be expected, because the series truncation also contributes to the error as 
discussed in Section 7.3.2. 
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Figure 7.10: Exact transfer function with frequency spacing of 5 rad/s in the upper plot. The sampled points 
are shown by the cross mark. The corresponding impulse response is shown in the lower plot together with 
the temporal truncation. 
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Figure 7.11: Error of magnitude and phase angle with frequency spacing of 5 rad/s. 
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Figure 7.12: Exact transfer function with frequency spacing of 10 rad/s shown in the upper plot. The 
sampled points are shown by the cross mark. The corresponding impulse response is shown in the lower plot 
together with the temporal truncation. 
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Figure 7.13: Error of magnitude and phase angle with frequency spacing of 10 rad/s. 
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Figure 7.14: Exact transfer function with frequency spacing of 20 rad/s shown in the upper plot. The 
sampled points are shown by the cross mark. The corresponding impulse response is shown in the lower plot 
together with the temporal truncation. 
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Figure 7.15: Error of magnitude and phase angle with frequency spacing of 20 rad/s. 
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Figure 7.16: Root mean square curve with respect to the integral of the truncated time domain signal. 
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Chapter 8 

Conclusions 

This project has successfully investigated an analytical framework for satisfying the causality condition in 
analysis and active control. A fundamental conclusion of this work is that the causality condition can be 
implicitly satisfied by causal expansions of transfer functions. Each basis function in a causal expansion 
obeys the Hilbert transform relations. In many cases, we have found that trigonometric functions make a 
mathematically convenient and appealing choice. Regardless of the choice of basis function, this framework 
offers a causal mapping between measured or desired values of a transfer function and values at other 
frequencies. 

From this analytical framework, previously noncausal control approaches may be made causal with very 
little loss in performance. This was demonstrated for two control approaches: maximum power absorption 
and minimization of net power in. Phase noise may be removed from measurements by finding the causal 
transfer function that best approximates the data, as demonstrated on the rich and challenging dataset 
provided by NRL. Transfer functions may be interpolated so that the interpolated function is causal, which 
is much more appealing than purely numerical approaches that violate causality. The phase of a reflected 
wave may be determined from the more easily measured magnitude if the reflection coefficient is minimum 
phase. 

This work represents much more than a simple check to determine if a model or set of data satisfles the 
causality condition. Instead, it oflfers a means of determining unmeasured quantities from applying Hilbert 
transform relations to measured quantities and correcting experimental errors. Using the same analytical 
framework allows one to find power absorbers that achieve global reductions in sound and vibration for 
transient disturbances. Our initial investigations have discovered and illustrated these concepts. We expect 
even more impressive results as they find applications in the Navy research and development community. 
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Chapter 9 

Publications and Presentations 

9.1 Publications 

The project produced the following publications: 

• "Simplified dynamics models of submerged objects from limited scattering data," J. Gregory McDaniel 
and Cory L. Clarke, Proceedings of the 2001 ASME International Mechanical Engineering Congress 
and Exposition, New York, NY, November 2001. 

• "Interpretation and identification of minimum phase reflection coefficients," J. Gregory McDaniel and 
Cory L. Clarke, The Journal of the Acoustical Society of America, Vol. 110, No. 6, pp. 3003-3010, 
December 2001. 

• "Applications of the Causality Condition to Mechanical Impedances and Acoustic Reflection Coef- 
ficients with Minimum and Nonminimum Phases," Cory L. Clarke, Master's Thesis, Aerospace and 
Mechanical Engineering Department, Boston University, December 2000. 

• "Interpolation of Transfer Functions for Damped Vibrating Systems," Xianfeng Zhao, Chapter 4, Ph.D. 
Thesis, Aerospace and Mechanical Engineering Department, Boston University, June 2004. 

• "Numerical Evaluation of the Hilbert Transform," Boston University Technical Report, October 1999. 

9.2 Presentations 

The project produced the following presentations: 

• "Causal Boundaries for Structural Acoustic Analysis and Design," J. Gregory McDaniel, presented at 
the George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, July 17, 
2002. 4. 

• "Causal Frequency-Domain Searches for Improved Data, Designs, and Controllers," J. Gregory Mc- 
Daniel and Cory L. Clarke, presented at the Structural Mechanics, Computational Mechanics, and 
Acoustic Signatures FY2002 Program Review, sponsored by the Office of Naval Research, April 18, 
2002. 

• "Causality applied to the acoustic identification of submerged objects in noisy environments," J. Gre- 
gory McDaniel and Cory L. Clarke, presented at the Structural Mechanics, Computational Mechanics, 
and Acoustic Signatures FY2001 Program Review, sponsored by the Office of Naval Research, April 
26, 2001. 
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• "Applications of the causality condition to acoustic sensing in noisy environments," presented to the 
Center for Subsurface Sensing and Imaging Systems (CENSSIS), Northeastern University, March 9, 
2001. 7. 

• "Applications of the causality condition to acoustic sensing in noisy environments," presented at the 
Department of Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Jan- 
uary 26, 2001 

• "Recent results on causality applications and the vibrations of complex structures," J. Gregory Mc- 
Daniel, presented at Electric Boat in Groton, Connecticut on July 10, 2000. 

• "Estimating reflection coefficient phase from measured magnitude using the causality condition," J. 
Gregory McDaniel and Cory L. Clarke, presented at the Structural Mechanics, Computational Me- 
chanics, and Acoustic Signatures FY2000 Program Review, sponsored by the Office of Naval Research, 
May 24, 2000. 

• "Some emerging structural acoustic technologies: causality and the vibrations of complex structures," 
J. Gregory McDaniel and Cory Clarke, presented at Newport News Shipbuilding in Newport News, 
Virginia on April 28, 2000. 

The project also provided material for Boston Universitys Pathways 2000 program, which inspires women 
in science and engineering . 
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Chapter 10 

Future Work 

10.1 Design Methodologies 

This work has yielded analytical formulations for constructing dynamic representations, such as impedance 
and admittance, that satisfy causality and minimum phase requirements. If further developed, these formula- 
tions are capable of yielding conceptual design tools for investigating the optimization of complex structural 
acoustic systems. The envisioned approach would yield indicate optimal and causal admittance matrices for 
achieving structural acoustic performance by using 

• Representation of drive-point admittances by imphcitly causal and minimum phase frequency expan- 
sions. 

• Representation of transfer admittances by implicitly causal frequency expansions. 

• Optimization of structural acoustic performance over all Fourier harmonics. 

• Methodologies to achieve optimized admittance matrices active and passive design technologies. 

10.2 Time Separation 

Our interactions with Newport News Shipbuilding have identified an important future direction of the work. 
In brief, structural acoustic testing of ship structures often involves acoustic radiation from several discrete 
portions of the wetted surface. Radiation from each portion arrives at a hydrophone at a time determined 
by the sound speed and the distance from that portion and the hydrophone. Since the radiating portions are 
typically different distances from the hydrophone, the arrivals are separated in time but often overlapping. 
The PI has met with staff at Newport News Shipbuilding to determine if concepts developed in this project 
can be further developed to allow for the complete separation of the separate arrivals. 
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